670076 programación didáctica Química 2º Bachillerato

327_334 pag BOCYL

objetivos, contenidos, criterios de evaluación y metodología, así como a la atención al alumnado con necesidades específicas de apoyo educativo

Bloque 2. Origen y evolución de los componentes del Universo

ContenidosCriterios de evaluaciónEstándares de aprendizaje evaluables
Orbitales atómicos. Números cuánticos y su interpretación. Configuraciones electrónicas. Niveles y subniveles de energía en el átomo. El espín. Partículas subatómicas: origen del Universo, leptones y quarks. Formación natural de los elementos químicos en el universo. Número atómico y número másico. Isótopos. 222 Clasificación de los elementos según su estructura electrónica: Sistema Periódico. Propiedades de los elementos según su posición en el Sistema Periódico: energía de ionización, afinidad electrónica, electronegatividad, radio atómico e iónico, número de oxidación, carácter metálico. Enlace químico. Enlace iónico. Redes iónicas. Energía reticular. Ciclo de Born-Haber. Propiedades de las sustancias con enlace iónico. Enlace covalente. Teoría de Lewis. Teoría de repulsión de pares electrónicos de la capa de valencia (TRPECV). Geometría y polaridad de las moléculas. Teoría del enlace de valencia (TEV), hibridación y resonancia. Teoría del orbital molecular. Tipos de orbitales moleculares. Propiedades de las sustancias con enlace covalente, moleculares y no moleculares. Enlace metálico. Modelo del gas electrónico y teoría de bandas. Propiedades de los metales. Aplicaciones de superconductores y semiconductores. Naturaleza de las fuerzas intermoleculares. Enlaces de hidrógeno y fuerzas de Van der Waals. Enlaces presentes en sustancias de interés biológico.
ContenidosCriterios de evaluaciónEstándares de aprendizaje evaluables
númerotipoelementomagnitudbloque
1físicatiempot: tiempo6. Cinemática

ContenidosCriterios de evaluaciónEstándares de aprendizaje evaluables
El método científico. Estrategias necesarias en la actividad científica. Sistema Internacional de Unidades. Transformación de unidades. Dimensiones. Análisis dimensional. Notación científica. Uso de cifras significativas. Expresión de una medida. Errores o incertidumbres. Tipos de errores. Las representaciones gráficas en Física y Química. Magnitudes físicas. Magnitudes fundamentales y derivadas. Escalares y vectores. Operaciones con vectores. Tecnologías de la Información y la Comunicación en el trabajo científico. Animaciones y aplicaciones virtuales interactivas. Proyecto de investigación. Elementos de un proyecto.1. Reconocer y utilizar las estrategias básicas de la actividad científica como: plantear problemas, formular hipótesis, proponer modelos, utilizar la notación científica, elaborar estrategias de resolución de problemas y diseños experimentales y análisis de los resultados.
2. Conocer, utilizar y aplicar las Tecnologías de la Información y la Comunicación en el estudio de los fenómenos físicos y químicos.
1.1. Aplica habilidades necesarias para la investigación científica, planteando preguntas, identificando problemas, recogiendo datos, diseñando estrategias de resolución de problemas utilizando modelos y leyes, revisando el proceso y obteniendo conclusiones. 1.2. Resuelve ejercicios numéricos expresando el valor de las magnitudes empleando la notación científica, estima los errores absoluto y relativo asociados y contextualiza los resultados. 1.3. Efectúa el análisis dimensional de las ecuaciones que relacionan las diferentes magnitudes en un proceso físico o químico. 1.4. Distingue entre magnitudes escalares y vectoriales y opera adecuadamente con ellas. 1.5. Elabora e interpreta representaciones gráficas de diferentes procesos físicos y químicos a partir de los datos obtenidos en experiencias de laboratorio o virtuales y relaciona los resultados obtenidos con las ecuaciones que representan las leyes y principios subyacentes. 1.6. A partir de un texto científico, extrae e interpreta la información, argumenta con rigor y precisión utilizando la terminología adecuada. 2.1. Emplea aplicaciones virtuales interactivas para simular experimentos físicos de difícil realización en el laboratorio. 2.2. Establece los elementos esenciales para el diseño, la elaboración y defensa de un proyecto de investigación, sobre un tema de actualidad científica, vinculado con la Física o la Química, utilizando preferentemente las TIC.
ContenidosCriterios de evaluaciónEstándares de aprendizaje evaluables
Unidades. Composición de fuerzas. Diagramas de fuerzas. Leyes de Newton. Fuerzas de contacto. Dinámica de cuerpos ligados y equilibrio de traslación. Concepto de tensión. Sistema de fuerzas en planos horizontales, planos inclinados y poleas. Fuerzas de rozamiento. Coeficiente de rozamiento y su medida en el caso de un plano inclinado. Fuerzas elásticas. Ley de Hooke. Dinámica del M.A.S. Movimiento horizontal y vertical de un muelle elástico. Dinámica del movimiento de un péndulo simple. Sistema de dos partículas. Momento lineal. Variación. Conservación del momento lineal e impulso mecánico. Dinámica del movimiento circular uniforme. Fuerza centrípeta. Ejemplos: vehículos en curva, con y sin peralte; movimiento de satélites. Fuerzas centrales. Momento de una fuerza y momento angular. Conservación del momento angular. Ley de Gravitación Universal. Expresión vectorial. Fuerza de atracción gravitatoria. El peso de los cuerpos. Principio de superposición. Leyes de Kepler y su relación con la ley de Gravitación Universal. Velocidad orbital. Cálculo de la masa de los planetas. Naturaleza eléctrica de la materia. Concepto de carga eléctrica. Interacción electrostática: ley de Coulomb. Principio de superposición. Analogías y diferencias entre la ley de gravitación universal y la ley de Coulomb.ejercicios de composición de fuerzas. 2. Resolver situaciones desde un punto de vista dinámico que involucran planos horizontales o inclinados y /o poleas. 3. Reconocer las fuerzas elásticas en situaciones cotidianas, calcular su valor y describir sus efectos relacionándolos con la dinámica del M.A.S. 4. Aplicar el principio de conservación del momento lineal a sistemas de dos cuerpos y predecir el movimiento de los mismos a partir de las condiciones iniciales. 5. Justificar la necesidad de que existan fuerzas para que se produzca un movimiento circular. 6. Contextualizar las leyes de Kepler en el estudio del movimiento planetario. 7. Asociar el movimiento orbital con la actuación de fuerzas centrales y la conservación del momento angular. 8. Determinar y aplicar la ley de Gravitación Universal a la estimación del peso de los cuerpos y a la interacción entre cuerpos celestes teniendo en cuenta su carácter vectorial. 9. Conocer la ley de Coulomb y caracterizar la interacción entre dos cargas eléctricas puntuales. 10. Valorar las diferencias y semejanzas entre la interacción eléctrica y gravitatoria.extrayendo consecuencias sobre su estado de movimiento. 1.2. Dibuja el diagrama de fuerzas de un cuerpo situado en el interior de un ascensor en diferentes situaciones de movimiento, calculando su aceleración a partir de las leyes de la dinámica. 2.1. Calcula el modulo del momento de una fuerza en casos prácticos sencillos. 2.2. Resuelve supuestos en los que aparezcan fuerzas de rozamiento en planos horizontales o inclinados, aplicando las leyes de Newton. 2.3. Relaciona el movimiento de varios cuerpos unidos mediante cuerdas tensas y poleas con las fuerzas actuantes sobre cada uno de los cuerpos. 3.1. Determina experimentalmente la constante elástica de un resorte aplicando la ley de Hooke y calcula la frecuencia con la que oscila una masa conocida unida a un extremo del citado resorte. 3.2. Demuestra que la aceleración de un movimiento armónico simple (M.A.S.) es proporcional al desplazamiento utilizando la ecuación fundamental de la Dinámica. 3.3. Estima el valor de la gravedad haciendo un estudio del movimiento del péndulo simple. 4.1. Establece la relación entre impulso mecánico y momento lineal aplicando la segunda ley de Newton. 4.2. Explica el movimiento de dos cuerpos en casos prácticos como colisiones y sistemas de propulsión mediante el principio de conservación del momento lineal. 5.1. Aplica el concepto de fuerza centrípeta para resolver e interpretar casos de móviles en curvas y en trayectorias circulares. 6.1. Comprueba las leyes de Kepler a partir de tablas de datos astronómicos correspondientes al movimiento de algunos planetas. 6.2. Describe el movimiento orbital de los planetas del Sistema Solar aplicando las leyes de Kepler y

Bloque 2. Aspectos cuantitativos de la Química

ContenidosCriterios de evaluaciónEstándares de aprendizaje evaluables
Leyes ponderales. Ley de Lavoisier. Ley de Proust. Ley de Dalton Revisión de la teoría atómica de Dalton. Leyes de los gases. Hipótesis de Avogadro. Presiones parciales. Gases ideales. Ecuación de estado de los gases ideales.

Bloque 3. Reacciones químicas

ContenidosCriterios de evaluaciónEstándares de aprendizaje evaluables
Formulación y nomenclatura de compuestos inorgánicos de acuerdo con las recomendaciones de la IUPAC. Concepto de reacción química y ecuación química. 121 Estequiometría de las reacciones. Ajuste de ecuaciones químicas. Cálculos estequiométricos con relación masa-masa, volumen-volumen en gases y con relación masa-volumen; en condiciones normales y no normales de presión y temperatura.

Bloque 4. Transformaciones energéticas y espontaneidad de las reacciones químicas

ContenidosCriterios de evaluaciónEstándares de aprendizaje evaluables
La energía en las reacciones químicas. Sistemas termodinámicos. Estado de un sistema. Variables y funciones de estado. Trabajo mecánico de expansión-compresión de un gas. Primer principio de la termodinámica. Energía interna. Calor de reacción. Entalpía. Diagramas entálpicos. Ecuaciones termoquímicas. Entalpía de formación estándar y entalpía de enlace. Leyes termoquímicas: Ley de Lavoisier-Laplace. Ley de Hess. Segundo principio de la termodinámica. Entropía. Variación de entropía en una reacción química. Procesos espontáneos y no espontáneos. Factores que intervienen en la espontaneidad de una reacción química. Energía de Gibbs. Reacciones de combustión. Reacciones químicas y medio ambiente: efecto invernadero, agujero en la capa de ozono, lluvia ácida. Consecuencias sociales y medioambientales de las reacciones químicas de combustión y otras. Desarrollo y sostenibilidad.Interpretar el primer principio de la termodinámica como el principio de conservación de la energía en sistemas en los que se producen intercambios de calor y trabajo. 2. Reconocer la unidad del calor en el Sistema Internacional y su equivalente mecánico. 3. Interpretar ecuaciones termoquímicas y distinguir entre reacciones endotérmicas y exotérmicas. 4. Conocer las posibles formas de calcular la entalpía de una reacción química. 5. Dar respuesta a cuestiones conceptuales sencillas sobre el segundo principio de la termodinámica en relación a los procesos espontáneos. 6. Predecir, de forma cualitativa y cuantitativa, la espontaneidad de un proceso químico en determinadas condiciones a partir de la energía de Gibbs. 7. Distinguir los procesos reversibles e irreversibles y su relación con la entropía y el segundo principio de la termodinámica. 8. Analizar la influencia de las reacciones de combustión a nivel social, industrial y medioambiental y sus aplicaciones.1.1. Relaciona la variación de la energía interna en un proceso termodinámico con el calor absorbido o desprendido y el trabajo realizado en el proceso. 2.1. Explica razonadamente el procedimiento para determinar el equivalente mecánico del calor tomando como referente aplicaciones virtuales interactivas asociadas al experimento de Joule. 3.1. Expresa las reacciones mediante ecuaciones termoquímicas dibujando e interpretando los diagramas entálpicos asociados. 4.1. Calcula la variación de entalpía de una reacción aplicando la ley de Hess, conociendo las entalpías de formación o las energías de enlace asociadas a una transformación química dada e interpreta su signo.
5.1. Predice la variación de entropía en una reacción química dependiendo de la molecularidad y estado de los compuestos que intervienen. 6.1. Identifica la energía de Gibbs con la magnitud que informa sobre la espontaneidad de una reacción química. 6.2. Justifica la espontaneidad de una reacción química en función de los factores entálpicos entrópicos y de la temperatura. 7.1. Plantea situaciones reales o figuradas en que se pone de manifiesto el segundo principio de la termodinámica, asociando el concepto de entropía con la irreversibilidad de un proceso. 7.2. Relaciona el concepto de entropía con la espontaneidad de los procesos irreversibles. 8.1. A partir de distintas fuentes de información, analiza las consecuencias del uso de combustibles fósiles, relacionando las emisiones de CO2, con su efecto en la calidad de vida, el efecto invernadero, el calentamiento global, la reducción de los recursos naturales, y otros y propone actitudes sostenibles para minorar estos efectos.
ContenidosCriterios de evaluaciónEstándares de aprendizaje evaluables
Leyes ponderales. Ley de Lavoisier. Ley de Proust. Ley de Dalton Revisión de la teoría atómica de Dalton. Leyes de los gases. Hipótesis de Avogadro. Presiones parciales. Gases ideales. Ecuación de estado de los gases ideales.1. Conocer la teoría atómica de Dalton así como las leyes básicas asociadas a su establecimiento.
2. Utilizar la ecuación de estado de los gases ideales para establecer relaciones entre la presión, volumen y la temperatura. 3. Aplicar la ecuación de los gases ideales para calcular masas
1.1. Justifica la teoría atómica de Dalton y la discontinuidad de la materia a partir de las leyes fundamentales de la Química ejemplificándolo con reacciones. 2.1. Determina las magnitudes que definen el estado de un gas aplicando la ecuación de estado de los gases ideales.

Bloque 8. Energía

ContenidosCriterios de evaluaciónEstándares de aprendizaje evaluables
(Trabajo, energía cinética y energía potencial)
Formas de energía. Transformación de la energía. Energía mecánica y trabajo. Trabajo realizado por una fuerza en dirección distinta a la del movimiento. Principio de conservación de la energía mecánica. Sistemas conservativos. Teorema de las fuerzas vivas. Energía cinética y potencial del movimiento armónico simple. Conservación de la energía en un movimiento armónico simple.
Trabajo eléctrico. Campo eléctrico. Diferencia de potencial eléctrico.
1. Establecer la ley de conservación de la energía mecánica y aplicarla a la resolución de casos prácticos. 2. Reconocer sistemas conservativos como aquellos para los que es posible asociar una energía potencial y representar la relación entre trabajo y energía. 3. Conocer las transformaciones energéticas que tienen lugar en un oscilador armónico. 4. Vincular la diferencia de potencial eléctrico con el trabajo necesario para transportar una carga entre dos puntos de un campo eléctrico y conocer su unidad en el Sistema Internacional.1.1. Aplica el principio de conservación de la energía para resolver problemas mecánicos, determinando valores de velocidad y posición, así como de energía cinética y potencial. 1.2. Relaciona el trabajo que realiza una fuerza sobre un cuerpo con la variación de su energía cinética y determina alguna de las magnitudes implicadas. 2.1. Clasifica en conservativas y no conservativas, las fuerzas que intervienen en un supuesto teórico justificando las transformaciones energéticas que se producen y su relación con el trabajo. 3.1. Estima la energía almacenada en un resorte en función de la elongación, conocida su constante elástica. 3.2. Calcula las energías cinética, potencial y mecánica de un oscilador armónico aplicando el principio de conservación de la energía y realiza la representación gráfica correspondiente. 4.1. Asocia el trabajo necesario para trasladar una carga entre dos puntos de un campo eléctrico con la diferencia de potencial existente entre ellos permitiendo la determinación de la energía implicada en el proceso.

Refuerzo 4º ESO

ContenidosCriterios de evaluaciónEstándares de aprendizaje evaluables
Presión. Aplicaciones. Principio fundamental de la hidrostática. Principio de Pascal. Aplicaciones prácticas. Principio de Arquímedes. Flotabilidad de objetos.

Química 2º Bachillerato

ContenidosCriterios de evaluaciónEstándares de aprendizaje evaluables
los seres vivos. El convertidor catalítico. Equilibrio químico. Ley de acción de masas. La constante de equilibrio: formas de expresarla: Kc, Kp, Kx. Cociente de reacción. Grado de disociación. Factores que afectan al estado de equilibrio: Principio de Le Châtelier. Equilibrios químicos homogéneos. Equilibrios con gases. La constante de equilibrio termodinámica. Equilibrios heterogéneos: reacciones de precipitación. Concepto de solubilidad. Factores que afectan a la solubilidad. Producto de solubilidad. Efecto de ion común. Aplicaciones analíticas de las reacciones de precipitación: precipitación fraccionada, disolución de precipitados. Aplicaciones e importancia del equilibrio químico en procesos industriales y en situaciones de la vida cotidiana. Proceso de Haber–Bosch para obtención de amoniaco. Equilibrio ácido-base. Concepto de ácido-base. Propiedades generales de ácidos y bases. Teoría de Arrhenius. Teoría de Brönsted-Lowry. Teoría de Lewis. Fuerza relativa de los ácidos y bases, grado de ionización. Constante ácida y constante básica. Equilibrio iónico del agua. Concepto de pH. Importancia del pH a nivel biológico. Volumetrías de neutralización ácido-base. Procedimiento y cálculos. Gráficas en una valoración. Sustancias indicadoras. Determinación del punto de equivalencia. Reacción de hidrólisis. Estudio cualitativo de la hidrólisis de sales: casos posibles. Estudio cualitativo de las disoluciones reguladoras de pH. Ácidos y bases relevantes a nivel industrial y de consumo.
NaVa=NbVb
ácido-base
proceso, en el que intervienen gases, en función de la concentración y de las presiones parciales. 6. Relacionar Kc y Kp en equilibrios con gases, interpretando su significado. 7. Resolver problemas de equilibrios homogéneos, en particular en reacciones gaseosas, y de equilibrios heterogéneos, con especial atención a los de disolución-precipitación y a sus aplicaciones analíticas. 8. Aplicar el principio de Le Châtelier a distintos tipos de reacciones teniendo en cuenta el efecto de la temperatura, la presión, el volumen y la concentración de las sustancias presentes prediciendo la evolución del sistema 9. Valorar la importancia que tiene el principio Le Châtelier en diversos procesos industriales. 10. Explicar cómo varía la solubilidad de una sal por el efecto de un ion común. 11. Aplicar la teoría de Brönsted para reconocer las sustancias que pueden actuar como ácidos o bases. 12. Determinar el valor del pH de distintos tipos de ácidos y bases y relacionarlo con las constantes ácida y básica y con el grado de disociación. . 13. Explicar las reacciones ácido-base y la importancia de alguna de ellas así como sus aplicaciones prácticas. 14. Justificar el pH resultante en la hidrólisis de una sal. 15. Utilizar los cálculos estequiométricos necesarios para llevar a cabo una reacción de neutralización o volumetría ácido-base. 16. Conocer las distintas aplicaciones de los ácidos y bases en la vida cotidiana tales como productos de limpieza, cosmética, etc. 17. Determinar el número de oxidación de un elemento químico identificando si se oxida o reduce en una reacción química.constante de equilibrio previendo la evolución de una reacción para alcanzar el equilibrio. 4.2. Comprueba e interpreta experiencias de laboratorio donde se ponen de manifiesto los factores que influyen en el desplazamiento del equilibrio químico, tanto en equilibrios homogéneos como heterogéneos. 5.1. Halla el valor de las constantes de equilibrio, Kc y Kp, para un equilibrio en diferentes situaciones de presión, volumen o concentración. 5.2. Calcula las concentraciones o presiones parciales de las sustancias presentes en un equilibrio químico empleando la ley de acción de masas y cómo evoluciona al variar la cantidad de producto o reactivo 6.1. Utiliza el grado de disociación aplicándolo al cálculo de concentraciones y constantes de equilibrio Kc y Kp. 7.1. Relaciona la solubilidad y el producto de solubilidad aplicando la ley de Guldberg y Waage en equilibrios heterogéneos sólido-líquido y lo aplica como método de separación e identificación de mezclas de sales disueltas. 8.1. Aplica el principio de Le Châtelier para predecir la evolución de un sistema en equilibrio al modificar la temperatura, presión, volumen o concentración que lo definen, utilizando como ejemplo la obtención industrial del amoníaco. 9.1. Analiza los factores cinéticos y termodinámicos que influyen en las velocidades de reacción y en la evolución de los equilibrios para optimizar la obtención de compuestos de interés industrial, como por ejemplo el amoníaco. 10.1. Calcula la solubilidad de una sal interpretando cómo se modifica al añadir un ion común. 11.1. Justifica el comportamiento ácido o básico de un compuesto aplicando la teoría de Brönsted-Lowry de los pares de ácido-base conjugados.
númeroelementomagnitudbloque
6tiempot: tiempo1. La actividad científica
númeroelementomagnitudbloque
8gasp: Presión2. La materia

química

ContenidosCriterios de evaluaciónEstándares de aprendizaje evaluables
Establecer las relaciones entre las variables de las que depende el estado de un gas a partir de representaciones gráficas y/o tablas de resultados obtenidos en experiencias de laboratorio o simulaciones por ordenador. Interpretar gráficas sencillas, tablas de resultados y experiencias que relacionan la presión, volumen y la temperatura de un gas.
númeroelementomagnitudbloque
9mezclaE: energíavida y energía
ContenidosCriterios de evaluaciónEstándares de aprendizaje evaluables
Aspectos medio ambientales de la Química del carbono.Valorar el papel de la química del carbono en nuestras vidas y reconocer la necesidad de adoptar actitudes y medidas medioambientalmente sostenibles.6.1. A partir de una fuente de información, elabora un informe en el que se analice y justifique a la importancia de la química del carbono y su incidencia en la calidad de vida 6.2. Relaciona las reacciones de condensación y combustión con procesos que ocurren a nivel biológico.
númeroelementomagnitudbloque
10equipotodas1. La actividad científica
ContenidosCriterios de evaluaciónEstándares de aprendizaje evaluables
Medida de magnitudes. Unidades. Sistema Internacional de Unidades (S.I). Factores de conversión entre unidades. Notación científica. Redondeo de resultados. Utilización de las Tecnologías de la información y la comunicación. El trabajo en el laboratorio.El método científico. Estrategias necesarias en la actividad científica. Sistema Internacional de Unidades. Transformación de unidades. Dimensiones. Análisis dimensional. Notación científica. Uso de cifras significativas. Expresión de una medida. Errores o incertidumbres. Tipos de errores. Las representaciones gráficas en Física y Química. Magnitudes físicas. Magnitudes fundamentales y derivadas. Escalares y vectores. Operaciones con vectores. Tecnologías de la Información y la Comunicación en el trabajo científico. Animaciones y aplicaciones virtuales interactivas. Proyecto de investigación. Elementos de un proyecto.Medida de magnitudes. Unidades. Sistema Internacional de Unidades (S.I). Factores de conversión entre unidades. Notación científica. Redondeo de resultados. Utilización de las Tecnologías de la información y la comunicación. El trabajo en el laboratorio.Conocer los procedimientos científicos para determinar magnitudes. Realizar cambios entre unidades de una misma magnitud utilizando factores de conversión.
Reconocer los materiales e instrumentos básicos presentes en los laboratorios de Física y de Química. Conocer, y respetar las normas de seguridad en el laboratorio y de eliminación de residuos para la protección del medioambiente.Reconocer y utilizar las estrategias básicas de la actividad científica como: plantear problemas, formular hipótesis, proponer modelos, utilizar la notación científica, elaborar estrategias de resolución de problemas y diseños experimentales y análisis de los resultados. 2. Conocer, utilizar y aplicar las Tecnologías de la Información y la Comunicación en el estudio de los fenómenos físicos y químicos.Conocer los procedimientos científicos para determinar magnitudes. Realizar cambios entre unidades de una misma magnitud utilizando factores de conversión.
Reconocer los materiales e instrumentos básicos presentes en los laboratorios de Física y de Química. Conocer, y respetar las normas de seguridad en el laboratorio y de eliminación de residuos para la protección del medioambiente.
1.1 Establece relaciones entre magnitudes y unidades utilizando preferentemente el Sistema Internacional de Unidades y la notación científica para expresar los resultados.
2.1. Reconoce e identifica los símbolos más frecuentes utilizados en el etiquetado de productos químicos e instalaciones, interpretando su significado.
2.2. Identifica material e instrumentos básicos de laboratorio y conoce su forma de utilización para la realización de experiencias, respetando las normas de seguridad e identificando actitudes y medidas de actuación preventivas.1.1. Aplica habilidades necesarias para la investigación científica, planteando preguntas, identificando problemas, recogiendo datos, diseñando estrategias de resolución de problemas utilizando modelos y leyes, revisando el proceso y obteniendo conclusiones. 1.2. Resuelve ejercicios numéricos expresando el valor de las magnitudes empleando la notación científica, estima los errores absoluto y relativo asociados y contextualiza los resultados. 1.3. Efectúa el análisis dimensional de las ecuaciones que relacionan las diferentes magnitudes en un proceso físico o químico. 1.4. Distingue entre magnitudes escalares y vectoriales y opera adecuadamente con ellas. 1.5. Elabora e interpreta representaciones gráficas de diferentes procesos físicos y químicos a partir de los datos obtenidos en experiencias de laboratorio o virtuales y relaciona los resultados obtenidos con las ecuaciones que representan las leyes y principios subyacentes. 1.6. A partir de un texto científico, extrae e interpreta la información, argumenta con rigor y precisión utilizando la terminología adecuada. 2.1. Emplea aplicaciones virtuales interactivas para simular experimentos físicos de difícil realización en el laboratorio. 2.2. Establece los elementos esenciales para el diseño, la elaboración y defensa de un proyecto de investigación, sobre un tema de actualidad científica, vinculado con la Física o la Química, utilizando preferentemente las TIC.1.1 Establece relaciones entre magnitudes y unidades utilizando preferentemente el Sistema Internacional de Unidades y la notación científica para expresar los resultados.
2.1. Reconoce e identifica los símbolos más frecuentes utilizados en el etiquetado de productos químicos e instalaciones, interpretando su significado.
2.2. Identifica material e instrumentos básicos de laboratorio y conoce su forma de utilización para la realización de experiencias, respetando las normas de seguridad e identificando actitudes y medidas de actuación preventivas.
%d bloggers like this: